
J. GUIDANCE, VOL. 16, NO. 6: ENGINEERING NOTES 1185

4Kawasaki, N., and Shimemura, E., "Determining Quadratic
Weighting Matrices to Locate Poles in a Specified Region," Automat-
ica, Vol. 19, Sept. 1983, pp. 557-560.

5Shieh, L. S., Dib, H. M., and Ganesan, S., "Linear Quadratic
Regulators with Eigenvalue Placement in a Specified Region," Auto-
matica, Vol. 24, Nov. 1988, pp. 819-823.

6Davison, E. J., and Ramesh, N., "A Note on the Eigenvalues of a
Real Matrix," IEEE Transactions on Automatic Control, Vol. 15,
April 1970, pp. 252, 253.

7Levine, W. S., and Athans, M., "On the Determination of the
Optimal Constant Output Feedback Gains for Linear Multivariable
Systems," IEEE Transactions on Automatic Control, Vol. 15, Feb.
1970, pp. 44-48.

Design of Guaranteed Performance
Controllers for Systems

with Varying Parameters

F. Mora-Camino*
E.N.A.C., 31055 Toulouse, France

and
A. K. Achaibout

Centre National de la Recherche Scientifique,
31077 Toulouse, France

I. Introduction

SYSTEMS are designed to operate within a nominal do-
main that may cover different stages of a standard opera-

tion. Therefore, multiple models, or models with varying
parameters, characteristic of the current operating conditions,
must be established to represent the dynamics. However, the
number of models and related control laws must be reduced to
be tractable.

The problem of the design of guaranteed cost control laws
has been a topic of interest since Chang and Peng1 introduced
the idea of modifying the Riccati equation of the standard
linear quadratic regulator (LQR) problem to cope with param-
eter uncertainties. More recently, with the large emphasis in
robust control theory, the topic has gained new interest with
authors such as Vinkler and Wood,2 Peter sen and Hollot,3 and
Schmitendorf.4

In this Note, the results of Vinkler are extended to the case
of a variable control matrix, and a new formulation of the
modified Riccati equation is proposed. Guaranteed perfor-
mance and stability domains are then derived around each
reference point subject to such control laws. A paving of the
whole operations domain is then possible using repetitive cal-
culations. An heuristic approach is proposed to select a limited
number of reference points. This approach is applied to the
design of multiple laws for the longitudinal control of an air-
plane within its flight domain.

II. Guaranteed Cost Control Law
Let us consider the linear system given by

x = A(p)x+B(p)u u <E (Rm

with
N

i=\

(1)

(2)
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where (AQ,BQ) is controllable and/? is a vector of characteristic
parameters of the system operating point, and matrices Af
are supposed rank one matrices. Let D0 be the feasible opera-
tions domain. Then we consider p € Dp where Dp is a connex
subset of DQ . The cost functional C over the entire operation
domain is

C = (3)

where g and R are, respectively, positive semidefinite and
positive definite matrices. Let S(t) be the nxn symmetric
matrix solution of the modified Riccati equation defined as

S(t) + S(t)A0 + A'0S(t) - S(t)B0R ~ lB0

with 0 < / < T and S(T) = Q where matrix P(S) is a symmetric
upper bound of

(5)-SB(p)R~W(p)S

in the sense that
x'P(S)x > x(E(p,S)x 6 Dp (R" (6)

In Sec. Ill it will be shown how to find such an upper bound.
Here the following theorem holds:
Theorem: Let S(t) be the solution of the modified Ric-

cati equation (4). Then choosing the control law u(t)
= -R-lB&S(t)x(t), the value of the cost functional C is
bounded above

(x'Qx + u'Ru) dt < xt
0S(0)x0, <E D (7)

So this control law is called a guaranteed cost control law over
Dp.

Note that this theorem is a generalization of Theorem 1 in
Ref . 2, because here we also consider uncertainty in the control
matrix B .

Proof: From Eq. (4) we get

(8)

and replacing P(S) by E(p, 5), the following inequality is
obtained:

(9)

From Eq. (1) we get

— (x'Sx) =at

+ xt[SB(p)]u + ut[Bt(p)S\x

and from Eq. (8)

and
d_
dt

(10)

x'[SB(p)R-lB'(p)S - Q]x (H)

xtSB(p)u +u( (12)
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If w(0 is chosen such that

ii(0= -R~l

Eq. (11) can be rewritten as

(13)

(14)

This last inequality must be satisfied for every p in Dp -, and in
particular we have

min
P € Dp

in (x'\-Q+S[B(p)-B0]R-l[B(p)
Dp \ C. L J L

(15)

Let

or

so that

with

So

then

or

max xt Q (p)x = x'Q(0);t (R" (16)

(17)

vx 6 (R17: - — (x'Sx) > x'Qx + u'Ru (18)df

Integrating the two sides of this equation between 0 and T
we get

(x'Qx + u'Ru) dt < Jt£S(0)jt0 (19)

So we get the preceding theorem, which is a generalization of
Theorem 1 in Ref. 2.

III. Modified Riccati Equation
To solve the modified Riccati equation, an upper bound of

E(p,S) must be taken. E(p,S) can be rewritten as

£(/?,5) = E Pi(SAi +A'iS) - EP// /
D r > - l D ? o \ V1 V^ »-• M /"CD D - l D ^
J/A jDo<J/ ~ Li LJ PiPj\^^i^ "j

The rank one Af matrices can be rewritten as

Af = v/w/, i = 1,... ,N v/ € (R" Wf € CR" (21)

Now

(22)

and

< a

with

then

or

with

max
Pi6 ̂ p

(23)

(24)

(25)

(26)

Also

- (SBfR ~1B]S + SBjR ~ lBfS)

= S(Bi-Bj)R-l(Bi-Bj)tS -

<xt[S(Bi-Bj)R-l(Bi-Bj)tS]x, Vx € <3T

and

xt(SB0R-lBt
iS+-SBiR-lBf>S)x

Now we get an upper bound for E(p,S)

xlEx < ax\SVS +
L

Vx € CR" (27)

Replacing P(S) by its expression in relation (4), the modified
Riccati equation becomes

with

where

S + SQ + A'QS - SM*S + Q* = 0

S(r) = 0 (28)

(20) Q* = Q + (29)
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(30)

It can be observed that if Dp is reduced to the nominal point
of operation, the modified Riccati equation reduces to the
classical one. To avoid the tendency of this approach to pro-
duce, through the solution of an LQR problem, large feedback
gains resulting from the augmented Q matrix, the size of Dp
must be chosen not too large. This may lead to memorize a
large number of parameters relative to reference points cover-
ing the whole operations domain and to frequent changes of
references during the operation.

IV. Discrete Control Structure
We consider within the total operations domain D0 a finite

set of points D8 such that Vp ^D0,3pi £D8 such that \\p-p'\\
<<5, where 6 is a given positive distance.

The approach proposed here to get a minimal guaranteed
cost control structure is composed of two procedures: first a
performance mapping is realized over the points in D8, then a
selection of a reduced number of reference points is made. The
performance mapping procedure is composed of the following
steps:

1) Around each point pk of D8 is considered a local oper-
ations domain

with
with parameter X: DPk(\)= ( p \ p =p

<X, a/>0, 1 = 1 to N and
where the coefficients a:/ are scaling factors. A bound is chosen
for X, X™ax such that taking a = max/| «/| , the modified Riccati
equation around point pk has a positive semidefinite solution.

2) A max eigenvalue for 5(0) is assigned to each point in D8,
A*, and the following problem is solved: For each pointpk in
D8, find the maximum value of X*, X*̂  such that 0<X\ <X™ax

and such that the max eigenvalue of 5(0,X*^) is less than A*..
Then the guaranteed cost control domain around point pk is

3) Verify that <5 is such that

such that

(3D

If this condition is not satisfied, a smaller value must be chosen
for <5, and steps 1 and 2 must be run again.

When this condition is fulfilled, an overlapping structure of
guaranteed cost control domains has been obtained. However,
because this structure may present for practical applications
too large a number of reference points, a procedure must be
established to diminish their number while maintaining the
control performance level. A second local domain is defined
around each reference point in D8: Let X .̂ =maxX such that
u*k = -Rk

lB0Skx is stabilizing. Then DPk(\s
k) is a stability

domain around point pk. If the control law u* is applied to the
system operating around reference point pk, the closed-loop
dynamics are given by

x=(Ak
Q-Bk,Rk

lBk
J'S*)x

or

with

x = Akx (32)

and Gk
h = Ak - Bk

hRk
lBktSk

Let Hk be a positive definite solution of the Lyapunov equa-
tion

AktH + HAk= -I

where /is the nxn unity matrix, and let

(34)

(35)

It has been shown5 that a sufficient stability condition for a
system governed by Eq. (32) is

max/j
OLh

1
(36)

So a guaranteed stability domain for system (34) around point
pk is given by ®s

k=DPk[\/amax(Lh\F£\)]. Now to each refer-
ence point pk in D8 it is possible to associate a guaranteed cost
control domain 3)£ and a guaranteed stability domain 3)£. In
general, it is expected that 3DJC3DJ. Now the procedure to
delete redundant reference points in D8 is as follows:

1) Let the initial solution set be D* =D8.
2) Rank the points in D8 in decreasing order with respect to

the size of their guaranteed cost control domains XV
3) Starting from the first of these ordered points pf, delete

from the solution set any point ph such that ph € £)/ and

(33)

4) Repeat step 3 until all of the remaining points in D* have
been checked. The resulting set D* is the proposed solution
set.

In the case where the system is likely to follow a reference
trajectory within the operations domain, to enforce the guar-
anteed cost control over this trajectory, step 3 may be modified
as follows: If point ph satisfies the condition of step 3 and its
deletion uncovers some part of the reference trajectory with
respect to the cost control condition, it will be maintained.

V. Application: Longitudinal Control of an Aircraft
Here we consider the problem treated by Chang and Peng.1

The simplified longitudinal motion model of a small aircraft,
the Trinidad 20, is given by the equations

a. = Zaa + q + Z8d (37)

where a. is the angle of attack

q = Maa + Mqq + M85 (38)

where q is the pitch rate and d the elevator deflection, and

6 = q (39)

where 6 is the pitch angle and where Za, Z6, Ma, Mq, and M8
are aerodynamic derivatives whose values are dependent on
the current point in the flight envelope and evolve within the
limits

-1.63<Z«< -1.41 0.09 <Z 5 < 0.104

-8.69<Ma< -7.52 -1.94<M9 < -1.68

-9.34<M8< -8.09

Choosing the reference point Za=-1.63, Z5 = 0.09, Ma =
-8.69, Mq= -1.94, and M8= -8.09, we get the represen-
tation

x =

with

x' = (a9q,B) (40)



1188 J. GUIDANCE, VOL. 16, NO. 6: ENGINEERING NOTES

with

AQ =

-1
-8

.63

.69 -
0.0

A2 =

~~

=

~0 0
= 1 0

_0 0

0.09~
-8.09

0.0

1.0 0.0
1.94 0.0
1.0 0.0

0~
0
0_

1 0 0
Al= 0 0 0

0 0 0

A3 =

B! =

~r
0

_0_

0 0 0
0 1 0

_0 0 0_

B2 =
0

1
0

The following cost function has been considered:

So we have

W' =
1 0 0
0 2 0
0 0 0

2 0 0
0 1 0
0 0 0

and 0< a < 1.25.
Solving the modified Riccati equation we get

for Xmax = 0

for Xmax = 0.2 5(0) =

0.304 0.0 0.0

0.0

0.0

0.0362 0.0
0.0 0.0

for Xmax = 0.6 S(0) =

0.450 0.0 0.0
0.0 0.0453 0.0
0.0 0.0 0.0_

~0.909 0.01 0.0"
0.01 0.0835 0.0
0.0 0.0 0.0

It has been found also that only five other reference points
are necessary to cover the whole operations domain when the
guaranteed performance level is chosen 50% above the refer-
ence level.

VI. Conclusion
A new technique derived from the guaranteed cost control

method of Chang and Peng has been developed for the closed-
loop control of systems with varying parameters. This tech-
nique allows the definition of guaranteed performance and
stability regions around reference points. An heuristic ap-
proach is then available for the definition of a set of reference
points that conveniently cover the whole operations domain.
This approach seems particularly promising for aerospace
applications.
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Introduction

L AUNCHING a rocket from the Earth's surface into orbit
requires a level of performance significantly above that

required to achieve orbital velocity alone, about 8 km/s. It is
found that the required performance as measured by the so-
called ideal-velocity gain is between 10 and 11 km/s. The
shortfall is due to several losses: 1) atmospheric, 2) steering,
and 3) gravity.

The first results from atmospheric drag and reduced engine
efficiency (due to the exhaust having to push aside the atmo-
sphere). Steering losses result from (possibly) conflicting de-
mands between altitude and path-angle requirements and a
need to escape the atmosphere. This phenomenon forces the
initial thrust to be directed more upward than otherwise desir-
able. Gravity losses result from the need to counter gravity via
propulsion once the support of the launch platform is lost.

This difference in ideal-velocity gain between 11 km/s vs 8
km/s is quite significant and results in a payload loss of about
50%. (The difference goes to additional propellant.) Since
with current booster technology it costs many hundreds of
dollars to place one kilogram into orbit, any savings in re-
quired velocity gain are welcome indeed! Such savings are
realized by optimal shaping of the launch trajectory.

These basic principles were recognized as far back as Tsi-
olkovsky,1 who performed elementary calculations for in-
clined vs vertical ascents and showed that significant savings
accrue from the former. His mathematical techniques, while
robust, were not sufficient to arrive at a precision optimal
trajectory. Credit goes to Goddard2'3 for first recognizing the
importance of the calculus-of-variations for trajectory shap-
ing. His analysis was directed toward vertical ascents of
sounding rockets, consistent with his limited stated goal of
reaching "extreme altitudes." To Oberth4'5 we owe the term
"synergistic trajectory" to denote a trajectory balanced with
regard to the various performance losses—in other words, an
optimal trajectory. Although he developed his ideas in some
detail, his methods are not based on the calculus-of-varia-
tions.

Preliminaries
The detailed rigorous solution to the optimal rocket prob-

lem was worked out in the 1950s by Lawden6 and others.3'7"10
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